A high hardness and temperature-resistant alloy is disclosed, and comprises 10-40 atomic percent Co, 30-56 atomic percent Cr, 10-40 atomic percent Ni, 6-13 atomic percent C, 0-8 atomic percent Mo, and 0-8 atomic percent W. Moreover, the elemental composition of the high hardness and temperature-resistant alloy can further comprise at least one additive element, such as Pb, Sn, Ge, Si, Zn, Sb, P, B, Mg, Mn, V, Nb, Ti, Zr, Y, La, Ce, Al, Ta, Cu, and Fe. Experimental data reveal that, the high hardness and temperature-resistant alloy can still show a property of hardness greater than HV100 in 900 degrees Celsius. Therefore, experimental data have proved that the high hardness and temperature-resistant alloy has a significant potential for applications in the manufacture of hot working die metals, components (e.g., turbine blade) for high temperature applications, and devices (e.g., aeroengine) for high temperature applications. |